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diminished greatly in the leukemia cells that carried full-length ~ Assuming that BCR-ABL1 targets downstream molecules of
BTK-specific siRNAs (see Fig. 9 B). the pre—B cell receptor signal cascade in BCR-ABL1" pre-B

Pre-B cell receptor—dependent Ca®* signals typically are lymphoblastic leukemia cells, we investigated whether BCR-
initiated by BTK-mediated phosphorylation of PLCy2 (9).  ABLl-dependent autonomous Ca’>* signals also are trans-

Figure 7. BTKPS2 facilitates BTK- and BCR-ABL1-dependent activa- kidney cells alone or in various combinations in the presence or absence of
tion of PLCy1 and STATS5 through its SH3 domain. BCR-ABL1, full-length STI571 or LFM-A13. As a readout, cells were harvested, subjected to intracellu-
BTK, BTKP®2, and the SH3-domain of BTK were expressed in 293T embryonic lar staining for tyrosine-phosphorylated PLCy1 or STATS5, and analyzed by
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duced by BTK and PLCy2. Unexpectedly, PLCy1—but not
PLCv2 (not depicted)—is phosphorylated by BCR-ABL1 in
human leukemia cells (Fig. 5, B and C) and in mouse B lym-
phoid cells that carry an inducible BCR-ABL1 transgene
(Fig. 5 B). As shown by coimmunoprecipitation, BCR-
ABL1 does not bind directly to PLCy1 (Fig. 5 D). Phosphor-
ylation of PLCy1 was sensitive to inhibition of BTK by
LFM-A13 (Fig. 5 C) which indicates that PLCy1 is activated
through BTK as in normal lymphocytes and not directly by
BCR-ABLI. Silencing of full-length BTK by RNA interfer-
ence using fluorescein-labeled full-length BTK-specific
siRINAs also results in a marked reduction of PLCy1Y783
phosphorylation as assessed by confocal laser microscopy (Fig.
5 C) and intracellular FACS staining (see Fig. 9 A).

PLCy1 contributes to survival signals in BCR-ABL1*

pre-B lymphoblastic leukemia cells

Whereas the role of STAT5 in BCR-ABL1-mediated sur-
vival signaling is well-established (21, 22, 24), a possible role
of PLCv1 in the promotion of survival of BCR-ABL1" pre-B
lymphoblastic leukemia cells has not been investigated. To de-
termine whether BCR-ABL1- and BTK-dependent activa-
tion of PLCy1 and PLCy1-mediated Ca®" release contributes
to BCR-ABL1-mediated survival signals, we silenced PLCy1
mRNA expression by RNA interference in three pre—B lym-
phoblastic leukemia cell lines that carry a BCR-ABL1 gene re-
arrangement (VII to IX, Table I) and four cell lines that carry
other chromosomal translocations (MLL-AF4, X; TEL-
AMLI1, X1I; E2A-PBX1, XIII; TEL-PDGFRB, XV; Table I).
As a control, nontargeting siRNAs were used. Cells were
transfected twice with fluorescein-labeled siRINAs. To assess
viability, fluorescein™ cells were analyzed for propidium io-
dide uptake and annexin V staining after 48 h. Among the
three BCR-ABL1" pre—B lymphoblastic leukemia cell lines,
viability (mean of three experiments = SD) was 90.3% =
2.7% with nontargeting siRINAs and 18.6% * 13.7% with
PLCry1-specific siRNAs. Among four leukemia cell lines that
carry other gene rearrangements, viability was 84.3% = 12.2%
with nontargeting siRNAs and 67.6% * 16.9% with PLCy1-
specific siRNAs. Unlike BCR-ABLI-negative leukemia cells,
silencing of PLCy1 in BCR-ABL1" pre—B lymphoblastic leu-
kemia cells results in a fivefold reduction of viability. Thus,
PLCy1 contributes to survival signaling specifically in BCR-
ABL1" pre—B lymphoblastic leukemia cell lines.

COOH-terminally truncated BTK functions as a link between
full-length BTK and BCR-ABL1

BCR-ABL1-dependent phosphorylation of BTK suggests
that BTK represents a substrate of the BCR-ABL1 kinase.

ARTICLE

However, previous work demonstrated that BCR-ABL1
cannot phosphorylate full-length BTK directly, but the
NH,-terminal BTK-SH3 domain fused to GST (26).

To determine how BCR-ABL1 can induce phosphory-
lation of full-length BTK, we studied whether full-length
BTK or BTK splice variants are part of the BCR-ABL1-sig-
nalosome. Using protein extracts of two BCR-ABLI1*
pre—B lymphoblastic leukemia cell lines, BCR-ABL1 signal-
ing complexes were immunoprecipitated with a BCR-spe-
cific antibody. Immunoprecipitation was controlled using
an anti-ABL1 antibody. Western blot showed that low
amounts of full-length BTK coimmunoprecipitates with
BCR-ABL1 (Fig. 6 A). As a control for quantitative distri-
bution of full-length BTK, BTKP%, and BTKP>? before
coimmunoprecipitation with BCR-ABL1, whole cell lysates
(WCLs) from two BCR-ABL1" leukemia cell lines were
subjected to Western blot (Fig. 6 A). Although full-length
BTK, BTKr®, and BTKP>2 are expressed at similar levels in
the leukemia cells (WCL, Fig. 6 A), the amount of full-
length BTK that coimmunoprecipitated with BCR-ABL1
was ~20-fold less than the amount of BTKP%2 that coimmu-
noprecipitated with BCR-ABL1. Although BTKP® is ex-
pressed clearly in the leukemia cells (WCL, Fig. 6 A), coim-
munoprecipitation of BTKP® with BCR-ABL1 could not
be detected (Fig. 6 A).

Preferential binding of BCR-ABL1 to BTKP? that
lacked the COOH terminus but retained the NH,-terminal
BTK-SH3 domain is consistent with previous findings that
demonstrated that BCR-ABL1 cannot directly phosphory-
late full-length BTK but can phosphorylate a BTK-SH3 do-
main-GST fusion molecule (26). However, binding of
BTKP>? to BCR-ABL1 also may be indirect in this case.
That the NH,-terminal BTK SH3 domain, but not full-
length BTK, can be phosphorylated readily by BCR-ABL1
suggests that the COOH terminus of BTK may interfere
with binding of BCR-ABL1 to BTK. Likewise, BTKP®
molecules that harbor an in-frame deletion but retain the
BTK COOH terminus do not immunoprecipitate with
BCR-ABL1. In this regard, the expression of truncated
BTK splice variants that lack the COOH terminus of BTK
may represent a mechanism to facilitate phosphorylation of
full-length BTK by BCR-ABL1. Because BTK molecules
also can self-associate through NH,-terminal SH3 domains
(27), BTK?>? may bind to BCR-ABL1 as well as to full-
length BTK and acts as link between the two kinases.

We next investigated whether full-length BTK can bind
to BTKP>2. Using an antibody specific for COOH-terminal
BTK (only recognizes full-length BTK) for immunoprecipi-
tation and an NH,-terminal BTK antibody (recognizes full-

flow cytometry (A). To visualize cytoplasmic localization of tyrosine-phos-
phorylated PLCy1 and nuclear localization of activated STATS5, the stained
cells also were subjected to analysis by confocal laser microscopy (B). 108
293T cells were transfected transiently with full-length BTK for 24 h and sub-
jected to immunoprecipitation of full-length BTK. Immunoprecipitation (IP)
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was controlled by a BTK-specific Western blot (C). Kinase activity of immuno-
precipitated BTK was analyzed in an in vitro kinase assay using 150 ng of a
PLCy1 fragment (amino acids 530 to 850) as substrate. In parallel, 25 ng of
recombinant active BTK and 100 ng of kinase-deficient SH3-domain of BTK
were used in kinase assays as positive and negative controls, respectively.
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length BTK and BTKP*?) for subsequent Western blotting,
we observed that BTKP?? coimmunoprecipitates with full-
length BTK (Fig. 6 A). These findings suggest a role for
BTKP>? as a link between BCR-ABL1 and full-length BTK.

In this case, BTKP>? also would facilitate tyrosine phos-
phorylation of full-length BTK by BCR-ABL1. Therefore,
we tested whether silencing of BTKP>2 in BCR-ABL1" pre—B
lymphoblastic leukemia cells results in decreased tyrosine
phosphorylation of full-length BTK. BCR-ABL1" pre-B
lymphoblastic leukemia cells were transfected with nontar-
geting or BTKP>2-specific fluorescein-labeled siRINAs (Fig.
3). Fluorescein® cells were sorted and analyzed for expres-
sion of tyrosine-phosphorylated BTK by Western blot (Fig.
6 B). Silencing of BTKP>2 mRNA expression by siRNAs did
not interfere with mRNA expression of full-length BTK
(Fig. 3), yet tyrosine phosphorylation of full-length BTK
was decreased by >90% (Fig. 6 B).

Given that BCR-ABL1 and full-length BTK cannot
bind directly to each other; BTKP>? can bind to BCR-ABL1
and full-length BTK; and expression of BTKP*? is required
for efficient tyrosine phosphorylation of full-length BTK, we

conclude that BTKP®2 can act as a link between BCR-ABL1
and full-length BTK.

This is in agreement with previous work which sug-
gested that kinase-deficient BTK may act as a linker mole-
cule between upstream kinases (e.g., SYK) and downstream
effector molecules (e.g., PLCy2; reference 11).

COOH-terminally truncated BTK can link full-length BTK to

BCR-ABL1 through its SH3 domain

Based on this assumption, one would predict that the coex-
pression of BTKP? with full-length BTK can facilitate the
interaction between BTK and BCR-ABL1, and hence, the
phosphorylation of downstream signaling molecules. To test
this possibility, BCR-ABL1, BTK, and its truncated variant,
BTKP? were expressed in 293T embryonic kidney cells
alone, in various combinations, or in the presence of BTK
(LFM-A13) or BCR-ABL1 (STI571) kinase inhibitors. As a
readout of this experiment, tyrosine phosphorylation of
PLCvy1 and STATS5 was measured. According to a previous
study, 293T cells do not express BTK but do express PLCy1
and STATS (28).
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Figure 8. BTKP52, but not BTKPSS, promotes cell survival, tyrosine
phosphorylation of STAT5, and up-regulation of BCLX.. BCR-ABLT*
pre-B lymphoblastic leukemia cells (IX, Table 1) were transfected with fluo-
rescein-labeled siRNA duplices against full-length BTK, BTKP®2, or BTKP as
described above (Fig. 3), and were analyzed by flow cytometry for annexin
V expression (A). As a negative control, nontargeting siRNA duplices were
used. Likewise, siRNA-treated leukemia cells were subjected to intracellular
staining for tyrosine-phosphorylated STAT5 and analyzed by flow cytome-

try (B). For the analysis of mRNA levels of BCLX,, BCR-ABLT* pre-B lym-
phoblastic leukemia cells were transfected with a nontargeting siRNA duplex
in the presence or absence of STI571 (for 12 h), as well as with siRNAs
against full-length BTK, BTKPS2, or BTKP®, 10° leukemia cells carrying fluo-
rescein-labeled siRNAs sorted by FACS and subjected to semiquantitative
RT-PCR analysis for mRNA levels of BCLX, (C). mRNA levels for COX6B (C)
and HPRT (Fig. 3) remained stable in all experiments.
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The expression of full-length BTK, BTK?2, or BCR-
ABL1 alone had no effect on tyrosine phosphorylation of
downstream molecules in general. However, to some extent,
single transfection with full-length BTK induced activation
of PLCy1. Likewise, to some extent, BCR-ABL1 alone in-
duced tyrosine phosphorylation of STAT5 (Fig. 7, A and B);
this indicates that BCR-ABL1 can activate STAT5 partially
in the absence of BTK. Coexpression of BTKP>? which
lacked a functional kinase domain and BCR-ABL1 did not
increase tyrosine phosphorylation as compared with expres-
sion of BCR-ABL1 alone. However, coexpression of
BTKP? with full-length BTK and BCR-ABL1 drastically
up-regulated PLCy1 and STAT5 phosphorylation (Fig. 7
A). As assessed by intracellular staining, phosphorylated
PLCvy1 and STATS5 were distributed in the cytoplasm and
the nucleus, respectively (Fig. 7 B).

Activation of PLCy1 and STAT5 upon triple transfec-
tion with full-length BTK, BTKP>2, and BCR-ABL1 largely
was sensitive to BTK (LFM-A13) or BCR-ABL1 (STI571)
kinase inhibition. Hence, enzymatic activity of both kinases
is required for activation of PLCy1 and STAT5. As a con-
trol, the enzymatic activity of BTK expressed in transfected
293T cells was confirmed in an in vitro kinase assay as de-
scribed in the Materials and methods section. The kinase ac-
tivity of BTK which was immunoprecipitated from 10°
transfected 293 T cells roughly was comparable to that of 25-
ng (0.008 U) recombinant BTK (Fig. 7 C).

Because BTK-SH3 domains can bind directly to BCR-
ABL1 (26) and also bind to proline-rich regions of other
BTK molecules (27), we tested whether the BTK-SH3 do-
main is sufficient to link full-length BTK to BCR-ABL1. In
fact, transfection of 293T cells with a vector encoding only
the BTK-SH3 domain had a similar effect compared with
transfection with BTKP2 comprising PH, TH, SH3, SH2
and a truncated kinase domain (Fig. 2 C). The SH3 domain
was sufficient to enable BCR-ABL1-driven activation of
PLCy1 and STATS5 in the presence of active full-length
BTK (Fig. 7 A). We conclude that BTKP>2, mainly through
its SH3 domain, can act as a linker between full-length BTK
and BCR-ABLI1.

BTKP52 but not BTKP®S cooperates with full-length BTK to
transduce BCR-ABL1-dependent survival signals

To clarify the specific contribution of BTKP>? and BTK?®
to BCR-ABL1 downstream survival signaling, annexin V
expression, STAT5 phosphorylation, and BCLX; mRNA
levels were measured in leukemia cells after transfection
with fluorescein-labeled siRNAs against BTKP>? and
BTKP® and nontargeting siRNAs (Fig. 8, A—C). Transfec-
tion of leukemia cells with nontargeting siRINAs or siRNAs
against BTKP% had no effect on viability as assessed by an-
nexin V staining (Fig. 8 A), tyrosine phosphorylation of
STATS5 (Fig. 8 B), and BCLX; mRNA levels (Fig. 8 C). In
contrast, siRNA-mediated silencing of BTKP>? induced
apoptosis in BCR-ABL1" pre—B lymphoblastic leukemia
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cells to a similar extent as full-length BTK (Fig. 8 A). Like-
wise, silencing of full-length BTK or BTKP>? decreased ty-
rosine phosphorylation of STAT5 (Fig. 8 B) and reduced
mRNA levels of BCLX; in the leukemia cells (Fig. 8 C).
Collectively, these findings indicate that survival signals in
BCR-ABL1" pre—B lymphoblastic leukemia cells require
BTK activity, and BTKP>? to act as a link between full-
length BTK and BCR-ABLI1.

Requirement of BTKPS2 for BCR-ABL1-driven autonomous
Ca2" signaling activity

Autonomous oscillatory Ca?* signals in BCR-ABL1" pre—B
lymphoblastic leukemia cells require kinase activity of
BCR-ABL1 and BTK (Fig. 5 A), as well as PLCvy activity
(9). Therefore, we investigated the impact of specific silenc-
ing of full-length BTK, BTK?>?, and BTK?* on PLCy1
activation (Fig. 9 A). siRNA-mediated knockdown of full-
length BTK and BTKP32 expression similarly reduced ty-
rosine phosphorylation of PLCy1, whereas siRINAs against
BTKP® had no effect (Fig. 9 A). In agreement with this,
siRNA-mediated inhibition of full-length BTK or BTKP>2
expression—but not expression of BTKP>—largely reduced
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Figure 9. Specific silencing of BTK full-length or BTKP52 reduces
PLCy1 phosphorylation and autonomous Ca2* oscillations in BCR-ABL*
pre-B lymphoblastic leukemia cells. BCR-ABLT* pre-B lymphoblastic
leukemia cells were transfected with nontargeting siRNAs or siRNAs
against full-length BTK, BTKP2, or BTK®®, then subjected to intracellular
staining for tyrosine-phosphorylated PLCy1 and analyzed by flow-cytometry
(A). Cytoplasmic Ca?* levels [nmol/I] were measured in single sIRNA-
containing cells by confocal laser-scanning microscopy by continuous
scanning for 6 min (B). Before analysis of Ca2* levels, leukemia cells carry-
ing fluorescein-labeled siRNAs were sorted by FACS. For each condition,
~50 individual cells were recorded. As a control, cytoplasmic Ca?* levels
were measured in cells with nontargeting siRNAs (red line).
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the amplitude of autonomous Ca’?* oscillations in BCR-
ABL1" pre-B lymphoblastic leukemia cells (Fig. 9 B). We
could not identify a specific function of BTKP with respect
to BCR-ABL1-mediated transformation in pre—B lympho-
blastic leukemia cells.

DISCUSSION

The leukemogenic BCR-ABL1 kinase mimics a constitu-
tively active pre—B cell receptor in pre—B lymphoblastic leu-
kemia cells. Although the leukemia cells frequently carry only
nonfunctional IGH-alleles (8), pre—B cell receptor signaling is
compromised even in the few cases in which the leukemia
cells express a pre—B cell receptor on their surface. Important
components of the pre—B cell receptor signaling cascade, in-
cluding SYK, SLP65, and BTK, are not phosphorylated in
response to pre—B cell receptor—engagement, and BTK is
constitutively phosphorylated by BCR-ABL1. BCR-ABL1-
dependent activation of BTK is critical for autonomous sur-
vival signals that otherwise would arise from the pre-B cell
receptor. We conclude that BTK activity is no longer re-
sponsive to pre—B cell receptor—dependent signals, but con-
tributes to multiple aspects of BCR-ABL1—driven survival
signaling in pre—B lymphoblastic leukemia cells.

Although BCR-ABL1 cannot interact with full-length
BTK directly (26), BCR-ABL1-induced aberrant splicing of
BTK premRNA leads to the expression of a truncated splice
variant of BTK that acts as a linker molecule between the
two kinases. Acting as a linker molecule, not only can trun-
cated BTKP?? facilitate BCR-ABL1—dependent activation of
full-length BTK but it can also facilitate BCR-ABL1-
dependent activation of downstream molecules, including
PLCvy1, STATS, and BCLX;.

The interaction between BCR-ABL1 and BTK is critical
because inhibition of BCR-ABL1 by STI571 and interfer-
ence with BTK activity specifically induces apoptosis in
BCR-ABL1* B lymphoid leukemia cells. Because resistance
to STI571 is frequent in the therapy of this leukemia entity
(15), inhibition of BTK or its truncated splice variant poten-
tially represents a therapeutic approach to circumvent
STI571 resistance of BCR-ABL1* pre—B lymphoblastic leu-
kemia cells.

MATERIALS AND METHODS

Patient samples and cell lines. Clinical data on patient samples and cy-
togenetic data on cell lines used are summarized in Table I and are described
in detail in supplemental Materials and methods (available at http://
www.jem.org/cgi/content/full/jem.20042101/DC1). All studies on hu-
man materials were performed on samples provided in compliance with In-
stitutional Review Board regulations (Department of Hematology, Univer-
sity of Frankfurt).

Sequence analysis of BTK and semiquantitative RT-PCR. In a
search for BTK isoforms, fragments of the BTK ¢cDNA were amplified cov-
ering the entire coding region using the PCR primer pairs listed in Table S1
(available at http://www.jem.org/cgi/content/full/jem.20042101/DCT1.
BTK amplification products were sequenced as described previously (29).
Primers used for semiquantitative RT-PCR analysis of human BCR-ABLI,
BCLX;, GAPDH, HPRT, and COX6B transcripts are listed in Table S1.

Transient expression of BCR-ABL1 in pre-B lymphoblastic leuke-
mia cells. Pre—B lymphoblastic leukemia cells (697 cell line) that carry an
E2A-PBX1, but no BCR-ABL1, gene rearrangement were transfected tran-
siently by electroporation (250 V and 950 wF) with pMIG-GFP or pMIG-
GFP BCR-ABL1 vectors that encoded GFP or GFP plus BCR-ABL1 as
described previously (30). For both transfections, GFP™ and GFP~ cells
were sorted after 24 h and subjected to mRNA isolation.

RNA interference with BTK and PLCvy1 expression. For each tar-
get, three different siRNA duplices were synthesized (MWG Biotech). Se-
quences of siRNA duplices are listed in Table S1. For knockdown of
PLCy1 mRNA expression, a pool of three validated siRINAs which target
different PLCy1 exons was used (Upstate). As a control, a nontargeting
siRNA duplex was used that does not match a known mRNA sequence.
All siRNA duplices were labeled with fluorescein using an siRINA labeling
kit (Ambion) according to the manufacturer’s protocol. BCR-ABL1" pre-B
lymphoblastic leukemia cells were transfected with a mixture of three fluo-
rescein-labeled siRINAs for each target sequence at a concentration of 100
nmol/l using oligofectamine in Opti-MEM1 medium (Invitrogen). After
24 h, leukemia cells were retransfected with labeled siRNAs and incubated
for an additional 24 h. Transfection efficiency was controlled by fluores-
cence microscopy and by FACS. The silencing effect of siRINAs for specific
BTK isoforms was controlled by RT-PCR analysis of BTK splice variants
in sorted of fluorescein™ cells. siRINA-containing fluorescein™ cells were
sorted using a FACStar 440 cell sorter. For each condition, 5 X 10° cells
were sorted and subjected to RNA isolation and ¢cDNA synthesis.

Western blotting. For the detection of signaling molecules by Western
blot, antibodies against BTK, PLCy1, PLCYy2, SLP65, and SYK (Cell Signal-
ing Technology), and phosphotyrosine-specific antibodies against BTKY??3,
PLCy1Y783 PLCy2Y"?17) SLP65Y%, and SYKY3?* (Cell Signaling Technol-
ogy) were used with the WesternBreeze immunodetection system (Invitro-
gen). Mouse monoclonal antibodies against tyrosine-phosphorylated BTKY???
and BTKY%! were provided by O.N. Witte (University of California, Los
Angeles, CA).

Coimmunoprecipitation. For immunoprecipitation of BCR-ABL1 or
BTK, 1.7 mg protein lysate in a volume of 800 .l was incubated with 30 pl
rProtein G Agarose beads (Invitrogen) for 2 h at 4°C on a shaker. The su-
pernatant was separated from the agarose beads and incubated with 6 pg of
an antibody against BCR (Santa Cruz Biotechnology) or with 15 g of an
antibody against COOH-terminal BTK (provided by Owen N. Witte). Af-
ter 8 h, 30 pl of agarose beads were added and incubation was continued
overnight. The agarose beads were washed twice with lysis buffer, resus-
pended in 35 pl of lysis bufter, and subjected to Western blotting.

Flow cytometry. For FACS analysis of BCR-ABL1" pre—B lymphoblas-
tic leukemia cells, antibodies against tyrosine-phosphorylated BTKY?%3, ty-
rosine-phosphorylated PLCy1Y7%, and tyrosine-phosphorylated STAT5Y%%
(Cell Signaling Technologies) were used. Apoptotic or dead cells were
identified by propidium iodide or PE-labeled annexin V (BD Biosciences).
As secondary antibody, anti—rabbit or anti-mouse IgG-Cy3 (Jackson Im-
munoResearch Laboratories) was used.

Immunofluorescence and confocal laser microscopy. Nuclear, cyto-
plasmic, or membrane localization of phosphorylated BTKY?2, PLCy1Y7%,
and STAT5Y* was analyzed using primary antibodies from Cell Signaling
Technology together with anti—rabbit IgG-Cy5 (Jackson ImmunoR esearch
Laboratories) as secondary antibody. Cells were fixed with 0.4% paraformal-
dehyde and incubated for 10 min in 90% methanol on ice and subjected to
confocal laser-scanning microscopy as described previously (14).

Expression of BCR-ABLI, full-length BTK, BTKP*2, and the BTK-
SH3 domain in 293T cells. 10° 293T embryonic kidney cells were
plated on a 24-well plate 24 h before transfection. Different combinations
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of expression vectors were prepared as indicated and 5 pg of each vector
was incubated with 8 pl of FUGENE6 (Roche) and 50 pl of serum- and
antibiotic-free RPMI 1640 medium for 15 min at room temperature. The
expression vector pMIG-bcr/abl for BCR-ABL1P?!Y (provided by D. Balti-
more, California Institute of Technology, La Jolla, CA) was used as de-
scribed previously (30). The expression vector pMIG-flagBtk for human
full-length BTK was generated by cloning of the human BTK ¢DNA into
the pMIG-R vector (30). For expression of BTKP>? (GenBank/EMBL/
DDB]J accession no. AJ888378), the expression vector pcDNA3.1 was used
with the directional TOPO Expression Kit (Invitrogen). For expression of
the BTK-SH3 domain, the pEBG BTK-SH3 vector (a gift from M. Bick-
esjo, Karolinska Institute, Huddinge, Sweden) was used as described previ-
ously (26).

Measurement of Ca?" signals in BCR-ABL1" pre-B lymphoblastic
leukemia cells. Pre-B lymphoblastic leukemia cells that carry a BCR-
ABL1 gene rearrangement were cultured in the presence or absence of the
BCR-ABL1 inhibitor, STI571 (Novartis), or the BTK inhibitor, LFM-A13
(Calbiochem), for the times indicated. In a different set of experiments, cells
were transfected with fluorescein-labeled siRINA duplices and fluorescein™
cells were sorted and conditioned in RPMI medium at 37°C before mea-
surement of cytoplasmic Ca?* concentrations. Cells were washed and
stained with Fluo-3 dye (Calbiochem) for 30 min. Changes of cytosolic
Ca?* were measured by confocal laser microscopy (31). For each condition,
Ca?* release of ~50 individual cells was recorded.

In vitro kinase assay. BTK that was immunoprecipitated from trans-
fected 293T cells was used in a kinase assay, including a Mg?*/ATP cocktail
(100 wmol/1) and a 61-kD fragment of PLCy1 (Santa Cruz Biotechnology)
as a substrate of BTK. Equal amounts of PLCy1 peptide (150 ng) and ATP
were incubated for 10 min at 30°C with BTK immunoprecipitates from 10°
transfected 293T cells; 25-ng active human recombinant BTK (Upstate)
was used as a positive control or 100 ng of a peptide corresponding to the
BTK-SH3 domain (Labvision; lacking kinase activity) was used as a nega-
tive control. The kinase activity of BTK that was immunoprecipitated from
5 X 10° transfected 293T cells was roughly comparable to that of 25-ng
(0.008 U) recombinant BTK (Fig. 7 C).

Online supplemental material. A detailed description of patient samples
and cell lines that were used in this paper is available as supplemental Mate-
rials and methods. Table S1 lists all PCR primers and siRNA duplices used.
Table S2 describes all aberrant splice variants of BTK amplified from BCR-
ABL1* pre-B lymphoblastic leukemia cells. Table S3 depicts SAGE-data
on mRNA levels of BCLX and BTK isoforms in normal B cell subsets and
BCR-ABL1* leukemia cells. Online supplemental material is available at
http://www.jem.org/cgi/content/full/jem.20042101/DC1.
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